SECTION 2 Short Answer

13 questions

(80 marks 40%)

Answer ALL questions in Section 2 in the spaces provided below.

Question 26.

Write equations for the reaction that occurs in each of the following procedures. If no reaction occurs, write 'no reaction'.

In each case describe what you would observe, including any

- * colour change
- * odour

(a)

- * precipitate (give the colour)
- * Gas evolutions (state the colour or describe as colourless) If a reaction occurs but the change is not observable, you should state this.

Oxygen gas is bubbled through an acidified solution of iron (II) sulfate. 02 + 9H+ +9= -> 2H20

Equation Or (9) + 4 H (ae) + 4 Fe (aa) -> 4 Fe (aa) + 2420 2

Pale green

ion solution changed (from gale green) to brown colour 2

(4 marks)

(b)

Ethene gas is bubbled through bromine water (aqueous solution of bromine):
$$C = C + \frac{1}{4} + \frac{1}{8} + \frac$$

Equation

Observation

Question 27.

A non-acidic organic compound has a molecular formula of C₄H₈O₂ and has a single functional group.

What is the name of the functional group in this compound? (1 mark) (i)

Ester.

0

propyl methanoute

(ii) Draw the structural formulae of two different isomers that fit this molecular formula. No 2 Conditions = non-acidic (2 marks)

It If If It

Order from the functional II (2 marks)

If If If It

Inethyl propanoate I (0 - c - 4)

I this molecular (2 marks)

I this molecular (2 ma

Select one of your isomers in part (ii) above. Write a balanced equation to show how this isomer could be produced in the laboratory. Include in your answer:

structural formulae and names of all organic compounds involved;

• the name of a suitable catalyst.

(3 marks)

Ho
$$C = C + cH_2 + cH_3$$

It off

I make structural I make name I make catalyst

Question 28.

Draw electron-dot diagrams showing the arrangement of all valence electrons in the following chemical species.

Describe the shape of each (eg: linear/bent/etc)

 OPCI3
CI:
CI:
P:CI:
2
O:
Shape tetvahedrad

Question 29.

linear

ECLOP PE

Ishoper

Methane reacts with fluorine to form four different fluorinated compounds?

Write the names and formulas of all the fluorinated methanes that are polar.

Thoromethan defluoromethan tifluoromethan

2 mbs Names - Ambas 2 mbs structure

Ambs take of I manh

(4 marks)

Question 30.

The following table shows the solubilities of two amines in water.

Amine	Methyl amine CH₃NH₂	Dodecyl amine CH ₃ (CH ₂) ₁₁ NH ₂
Solubility (g/100 mL)	108	0.05

Explain why their solubilities are so different.
 Include a labelled diagram.

	(A marks)
У	(4 marks)
4-C-N-N -C-E-E-	C-C-C-C-C-C-C
H' H	(((; f)
Stong dipole	wear doole
	stone da descon
Dipole dominant	Dispersion dominant
A lows meltiple solute - solvent	: dispersion forces between
H-bonding which = solvent-solvent	Tail + H20 not strong
bonds	enough to buch H-bond
	d 420-420 !!

The following table shows the solubilities of two amines in water.

Amine	Methyl amine CH ₃ NH ₂	Dodecyl amine CH ₃ (CH ₂) ₁₁ NH ₂
Solubility (g/100 mL)	108	0.05

Explain why their solubilities are so different. 2 well-explained reasons Include a labelled diagram.

- New solute-solvent bonds should be at least as strong as original solute-solute and solvent-solvent bonds
- Both can hydrogen-bond, BUT dodecyl isomer has a long non-polar chain that can only interact with H2O by dispersion force attraction,
- The new forces of attraction would be much weaker than the bonds broken between water molecules

Strong H-bonds replacing strong Hbonding between H₂O molecules and NH₂ groups

Only weak dispersion forces replacing strong H-bonding between H₂O molecules

(6 marks)

Q31

Three unlabelled beakers each contain the same volume of 1 mol L⁻¹ solution. The three solutions are:

- sodium hydrogensulfate (NaHSO₄)
- sulfuric acid (H₂SO₄), and
- phosphoric acid (H₃PO₄).

The student is asked to identify the solutions. He is also given a bottle of sodium hydroxide (NaOH) solution, a choice of indicators and is allowed to use any other item of laboratory glassware. The student was successful.

How did the student correctly identify the acids? Include equations to support your answer.

Q-31

Quaternary ammonium salts can be represented by the following structural formula.

If the alkyl group (R) is long then the salt acts like a soap or detergent. If it is short the salt has no cleaning properties.

Explain these two differences in properties. Include a labelled diagram.

2 well-explained reasons = 3 or 4 marks diagram = 2 or 3 marks

- / Grease is non-polar
- Cleaning agent needs a long non-polar tail to stick deep into the layer of grease so that when the water is agitated and pulls at the polar head sticking out of the grease layer the tail will remain bonded in the grease
 - A short tail will not provide sufficient dispersion interaction
- Causing the grease to break up into micelles/globules that can be rinsed away (not required)

Non-polar hydrocarbon tail

the exposed negative charges keep micelles from rejoining

Italicised parts not required

(6 marks)

Question 33.

_ > Druxe

An electrochemical cell contains the two half cells separated by a porous membrane, which allows ions to migrate through. Each half cell has a metal rod placed in a solution of its nitrate.

(a) Write the two half reactions that occur, their standard reduction potentials and state whether each is oxidation, or reduction,

reduction:
$$Pb^{2+} + 2e^{-} \rightarrow Pb0$$

$$E^{\circ} = \frac{-0.13}{0}$$

$$E^{\circ} = \frac{+0.74}{0}$$

$$(4 \text{ marks})$$

(b) Write the equation for the net redox equation.

$$3Pb^{2+}$$
 $+ 2Cr(s) \rightarrow 3Pb(s) + 2Cr^{3+}$ (2 mark)

(c) What is the emf (electromotive force, or voltage) of the cell?

- (d) Draw an arrow in the top box to show the direction of current (electron flow) in the wire connecting the two electrodes. (1 mark)
- (e) What change (or changes) will be observed in the cell?

Question 34.

A student is asked to identify four organic liquids, contained in four separate flasks.

- Octene
- Hexan-3-ol (3-hexanol)
- Hexan-3-one (3-hexanone)
- Butanoic acid

The student has access to any chemicals and glassware required.

Describe the tests that should be carried out, and the observations, that enable the

liquids to be identified.

Include equations to justify the choice of tests.

(8 marks)

Mix with bromine water -	- > orange colour disappears
	(turns colourless)
	Identify octene
1.	
no reaction	C8H16 + Br2 -> C8 H16 Br2
V	
Mix with sodium carbonate	
solution	-> habbling
	Johnson Butanoic acid
1	+ genitry sommore series
no reaction	2(3H, COOH + Naz CO3 -> 2(3H, COO)
· .	+ 1
	+ C
Mix with acidified potassium	
	imonate) -> colour change
permanganate (or potassian di	CHEOMETER L COLONI SINIA
solution	purple -> colourless
	(for permagnate)
v no reaction	orange -> green
Identify Hexan-3-one	(for distance)
(ketones will not oxidise)	Identify Hexan-3-01
(KETONES WITH NOT UNIGHSE)	toterited treesen 3
	4
	5 C6 H 140 + 2MAO + 64+
octene can also be	> 5(6H20 + 8H20+2N
MXI	
\$₩Ş,X ↔	01
	CPAGE 36 HI40 + C120- + 8H 18
SEE NEXT	$\frac{18}{3} = \frac{36}{3} \cdot \frac{18}{4} = \frac{36}{3} \cdot \frac{36}{5} = \frac{36}{3} = \frac{36}{3} \cdot \frac{36}{5} = \frac{36}{3} $
	つ 2Cr1 + イベ20 + 2C6

Question 35.

The following table gives information about two substances. Use the information to determine whether each substance is acting as an oxidising agent (oxidant), or reducing agent (reductant) and provide a brief explanation to justify your answer.

Substance	Information	Oxidant or reductant?	
Concentrated sulfuric acid H ₂ SO ₄	Reacts with copper to produce sulfur dioxide.	Oxidant (1) Why? S changes from (+6) to (+4) is reduced 5. an oxidant	T
Hydrogen peroxide H ₂ O ₂	Reacts with chlorine to produce chloride ion.	Reductant (1) Why? (1 changes from (0) to (-1) and is reduced (ie oxidant) this indicates the was oxidesed	I

Question 36.

A student pours some silver nitrate solution into a bronze (copper-tin alloy) container. Is this wise?

Explain why, or why not. Include an equation.

(3 marks)

(4 marks)

Question 37.

Vinegar is about 4% by mass acetic acid and is safe to consume in foods. The same strength sulfuric acid is not safe to consume. Explain why. Include equations.

(4 marks)

Sulfaric acid is a strong acid and completely coniscs
in solution

H2504(ag) > Htag) + H502 (ag)

H504 (ag) = Htag) + S02 (ag)

Acetic acid is a weak acid and conise to only
a small extent (about 1 %) (1)

CH3COOH = Htag + CH3COO (ag)

13. Name, and draw structural diagrams for, the following organic compounds.

Compound	Structural diagram	Name
An isomer of		,
dibromobutane 2 + 1	H H H Br H-C-C-C-C-Br H H H H	1,1 – dibromobutane
C4H8Brz	H H Br H H-C-C-C-C-Br H H H H	1,2 - dibromobutane
	H H Br H	2,2 - dibromobutane
	H Br Br H	2,3 - dibromobutane
	H Br H H	
	H-C-C-C-C-Br 	1,3 - dibromobutane
	H H H H	1,4 - dibromobutane
	B-C-C-C-H H Br H	1,2-dibrono-2-methyl propon
:		

An ester containing 4 carbon atoms	H H H OCH3	methyl propanoate
2 + 1	H-C-C OCH ₂ CH ₃	ethyl ethanoate
	H-C OCH2CH2CH3	propyl methanoate
The ketone with the least number of carbon atoms 2 + 1	Н Н Н-С-С-С-Н Н О Н	propanone acetone

(9 marks)

Answer ALL questions in Section 3 in the spaces provided.

Question 39.

Treatment of waste by-products in chemical industry

16 marks

In a chemical industries complex one production plant produces a waste caustic soda (NaOH) solution, which it stores in a large pond. Another production plant produces waste carbon dioxide. The chemical engineers decide to combine both wastes to produce the environmentally friendly by-product, sodium carbonate, by bubbling the carbon dioxide through the caustic soda solution.

2 NaOH +
$$CO_2$$
 \rightarrow Na_2CO_3 + H_2O

The caustic soda pond contains 500 kL and has a hydroxide (OH $^-$) concentration of 1.00 x 10 $^{-2}$ mol L $^{-1}$ (at 20 $^{\circ}$ C).

(a) What is the pH of the solution?

(3 marks)

$$K_0 = 1.00 \times 10^{14} = [H^T][OH] = [H^T][1.00 \times 10^{12}]$$

$$[H^T] = 1.00 \times 10^{12} \text{ mol} ^{-1}$$

(b) What is the mass of sodium hydroxide in the caustic soda pond?

(2 marks)

$$\frac{V(hach) = 500 \times 10^{5} L}{n(hach) = (.00 \times 10^{2} \text{ mol})^{-1}}$$

$$= \frac{V(hach) = cv}{s} = 500 \times 10^{3} \times (.00 \times 10^{2} = 5000 \text{ mol})$$

(c) What mass of can hydroxide? [If you did hydroxide.]	arbon dioxide is neede I not answer Part (b)		
•	in (Naon)		(4 marks)
		low Oc	1
$im(\omega_{\iota})$	$\frac{1}{2} \times 5000 = 20$ = $12-61 + 2 \times 16-60$	= 44.01 gmol-1	
) = n x M = 29		
.,			-110 kg 1
of m (s	Jaok) = 100kg	$in(O_2) = 55$	5 hg
200 kPa, deliver	ide is first cooled to 10 ing 150 L per minute. t take to complete the	reaction?	umped at a pressure of (5 marks)
T= 283K	· · · · · · · · · · · · · · · · · · ·	V = N2	27
P=200kPa		f	P
R= 8.315		= 2 <u>\$</u>	3048.36×283
v = ?		= 2	29400 L 1
n = 2500 mo)			
		1 stor / min	ŀ
		10 time	= 29400 = 196
If using 100kg Naoh	(120
	<u> </u>		
carbon dioxide h	as reacted suggest a	reason why is it still	
	o z basic sain	made p	trong base)
		75	wong base)
Naz Oz hy	drolyses to produce	e OH IOL	
(O) 2-	+ 4,0 = 40;	an) (an)	(2 marks)

Electrochemistry

The metal tin, Sn, is often used to surface coat steel cans to protect them from corrosion.

(a) In terms of the mechanisms of corrosion, explain how this protective coating works. (2 marks)

Coaling Works.

Fe \rightarrow Fe²⁺ + 26 $C_{29} + 2H_{29} + 4\epsilon \rightarrow 40H_{29}$ (2

So prevents Or and the acading Fe 31

(b) Once the coating is scratched and the steel is exposed, corrosion actually occurs more rapidly than if the tin were not there. In terms of corrosion

mechanisms, explain why this occurs. (2 marks)

Dissimlar votals in contact Sn + Fe - nets up aletrodennal sell.

Sn is less reactive than Fe, Sn is a cathoda, Fe it

So ate as a cathole

(c) A second alternative for the protection of steel from corrosion is to galvanise with zinc. Give a chemical reason, with equation, why Zn galvanising is **not** used to protect steel food cans from corrosion. (2 marks)

In 5 En + Zé reacts to produce els to pereze Fe 5 Fet 1726 martion.

Zn2+ is not healthy.

People searching for silver coins and jewellery at the bottom of the sea usually find them coated with the corrosion product silver sulfide, Ag₂S_(s), a black solid. To restore the silver coins 'cathodic reduction' is used. A possible cell for this process is shown in the diagram below.

Recovery of Corroded Silver Coins

At the cathode: $Ag_2S_{(s)} + 2e^- \rightarrow 2Ag(s) + S^{2-}_{(aq)}$ $\times 2$ At the anode: $4OH^{-}_{(aq)} \rightarrow O_{2(g)} + 2H_2O_{(l)} + 4e^{-}$

At the cathode a few bubbles of gas may also be seen. Suggest what this gas might be and account for its presence in terms of the appropriate half equation. (2 marks)

Cathode - Reduction occurs - gain of elections only gas that is produced by reduction is H,

SOZ! NO

52 + 2420 7 SOZ + 4ht + 6e OX NOT atcethode

1/2 S ges?

St- 4211 + -> 1/2 S & SEE (YES)

SEE NEXT PAGE

at cathole (where S punt)

These recovered silver coins will re-tarnish (Ag₂S $_{(s)}$ reforms) when exposed to air.

(†)	A thin electroplated coating of the metal rhodium onto the surface will protect the silver from tarnish. Give a reason why a thin coating of rhodium protects the coins from retarnishing. (2 marks)
	rhodnim is a noble metal prevents sulfide (52-) water and oxygen reaching silver 1
	water and oxygen reaching silver 1
(g)	The question above refers to "cathodic reduction". There is a completely different process called "cathodic protection". Give an example of where is it used and how it works. (3 marks)
	Cathodic protection is where a notal structure is
	Cathodic protection is where a notal structure is protected by a power supply -ve terminal connected to structure whilst we terminal commetted to scrap iron
-	note X 5 X 2+ r26
	Thorng excess dections

Question 41.

Production of phosphorus from fluoroapatite

6 marks

The mineral fluoroapatite $[Ca_{10}(PO_4)_6F_2]$ is mixed with sand $[SiO_2]$ and powdered carbon in a high temperature furnace. The phosphorus is produced as a gas $[P_2]$, along with carbon monoxide. The reaction actually produces calcium oxide [CaO], which has a very high melting point. This would make the mixture difficult to control. So, as the calcium oxide is produced it reacts with the sand to form a low melting point slag, calcium silicate $[CaSiO_3]$. This liquid slag is easily separated from the furnace. The reaction occurring is:

$$Ca_{10}(PO_4)_6 F_2 (s) + 9 SiO_2 (s) + 15 C (s) \rightarrow$$

 $3 P_2 (g) + 15 CO (g) + 9 CaSiO_3 (l) + CaF_2 (s)$

In a laboratory trial a 155 g sample of fluoroapatite (molar mass = 1008.62) is heated with excess sand and 25.0 g of carbon.

What mass of phosphorus would be produced?	(6 marks)
$\frac{(a_{10}(PO_4)_6 F_2(g) + 15 C \rightarrow 3P_2(g) + 15 C}{155g}$	
Find LR:	
SR = N(Fap) = 1 = 0.066 Find (orotto N(C) 15 Relationship	n (Fap) = 153 100 + 62 - 0.154 and
$\frac{AR = n(Fap) = 0.154 = 0.074}{n(c)} = \frac{0.154}{2.08} = 0.074$	n(c) = 25.0
Carlon is LR	= 2.08 mol
$n(l_2) = \frac{3}{15}n(c) = 0.2n(c)$	
= 0.2 × 2.08 = 0.416 mol 1	
$m(P_x) = 0.416 \times (2 \times 30.97)$	
= 25.77 g	
= 25.8 a	

Question 42.

Analysing an organic compound

12 marks

A certain organic compound is known to contain only carbon, hydrogen and oxygen.

The compound was analysed as follows.

A 2.149 g sample was burned and the carbon dioxide produced was bubbled through a barium hydroxide solution, producing 11.27 g of barium carbonate (BaCO₃).

 CO_2 + $Ba(OH)_2 \rightarrow BaCO_3$ + H_2O

- The mass of water produced by burning of the sample was 0.7721 g
- The compound was found to have a molecular weight of 150.1
- (a) What is the empirical formula of the compound?

(9 marks)

Cx HyO2 + O2 -> CO2 + H	20
1	
CO2 + (Ba(OH)2 -> Bacos	
$n(0,) = n(\beta a(0,))$	M (Ba(0;)=
	137-3+12-01+3-16-00
$n(c) = n(co_2) = \frac{11.27}{197.31}$	= 197.31 ginel-1
= 0.05712 mol 1	n(c) = 0.05712x 12:01
	=0.68599 g. 1
m(4,0) = 0:7721 g	
u(420) = 0.7721 = 0.04286mo)1	4/H) = 0 08C7/2 1008
241-008 + 16-00	=0.086399
$n(H) = 2 \times n(H,0) = 0.08571 \text{ mol } i$	0,086513.
(1)	
m(0) = m(sample) - m(c) - m(H) =	2.149 - 0.68599 -0 682
	1.3766 g. 1
$n(0) = \frac{1.3766}{16.06} = 0.0866 \text{ mol}$	3.
16.00	
C H O	
0.05712 0.0860 0.0860	
1.0 1.5 (.5	
	F= (U O)

SEE NEXT PAGE

= C2 H3O3

(b)	What is the molecular formula of the compound?	(2 marks)
	E(C, H,O,) = 12.01 x 2 + 3×1-008 + 2×1	6.00
	E(C, H, O,) = 12.01 × 2 + 3×1008 + 2×1 = 75.044 gmol ⁻¹ 1	
	M () = 150.1 qual -1	
	MF = 2 EF	
	= C4 H6O6 1	
(c)	The compound is also known to be a carboxylic acid; that is, co	ontaining one
	Write the molecular formula in the form of $C_XH_YO_Z$ COOH (giving and Z).	ng values for X, Y (1 mark)
	C40,004 X=3	(1110111)
	Y = 5	
	2 - 1	

Determining concentration of cerium (II) sulfate solution by titration

Cerium is a met also many medi						nas, i	in additio	n its	many in	dustrial uses,
Cerium (II) ion o						ion b	y hydrog	gen	peroxide	according to
the following eq	uation		,		- /				2 Ce ³⁺	_
A solution of ce	rium (II)	sulf	ate wa	ıs ar	nalysed b	y the	e followin	g st	eps:	. · · · · · · · · · · · · · · · · · · ·

- 50.00 mL of the solution was diluted to 500.0 mL in a volumetric flask
 20.00 mL of this diluted solution was pipetted into a conical flask
- III. About 20 mL of dilute sulfuric acid was added to the flask
- IV. Standardised hydrogen peroxide solution of concentration 0.05145 mol L⁻¹ was delivered from a burette
- V. The following titres of the hydrogen peroxide were required for the complete reaction:

Titre	Rough	1	2	3	4	5
Volume	35	35.40	34.55	35.50	35.45	35.45
(mL)						

(a) Why was 20 mL of sulphuric acid added in step III? Why wasn't some other acid added, say HCI? (2 marks)	
Mrson was added to provide H+ in Hroz+2H+ -2Ce+ >2Hro+	. 2.(
if H(1 was use Ci may be a reactant!	
(b) Referring to the results in step V, explain why the titre value used in subsequent calculations is 35.45 mL. (2 marks)	14
Do not use Rough and reading 2 If hading 1, 3, 4, +5 We averaged: average = 35.45 mL	

undiluted cerium sulfate solution?	
V (C2+) = 20.00 mL = 0.02000 L	(5 marks)
$C(H_{202}) = 0.05145 \text{ mol} L^{-1}$	7,
V (100) = 35.45 ml = 0.03545 L	
in (H2O2) = In (Ce2+) = cxv =	E O GOAF D GREET
deluted = 1.823.	9×10^{3} mol 1
Sample ~ (Ce2+) = 2x 1.8339x10-3 m	
= 3.6478 ×163 mal	
$= \frac{3.6478 \times 16^{3} \text{ mol}}{2.6748 \times 10^{3}} = \frac{3.6748 \times 10^{3}}{2.6748 \times 10^{3}} = \frac{3.6748 \times 10^{3}}{2$	0.1823 nol L' (delute)
indulated $C(C_{2}^{2\pi}d_{1}) \cdot v(C_{2}^{2\pi}d_{1}) = C(C_{2}^{2\pi}d_{1})$ Sample $0.1823 \times 500.0 \times 10^{3} = C(C_{2}^{2\pi}d_{1})$	et come) v (Cetan)
Sample 0 1823 = 500.0x103 = c.(c.	1 50:00×103
C((c2" conc) = 1-8	23 mol L-1
(d) Calculate the value of the original undiluted cerium grams per litre (g L ⁻¹)?	sulphate solution in (1 mark)
M(Ce SOa) = 140.1+32.06+4×16.00 = 736.16	
$M(CeSO_4) = 140.1 + 32.06 + 4 \times 16.00 = 236.16$ $m(CeSO_4) = n \times M = 1.823 \times 236.16 = 430.5$	
	}
c((e50,) = 430.5 g/L	

The vanadium battery is being developed as an alternative to the lead/acid rechargeable battery for use in electric vehicles. As a vanadium battery discharges the unbalanced, overall reaction is:

$$VO_2^+_{(aq)} + V^{2+}_{(aq)} \rightarrow VO^{2+}_{(aq)} + V^{3+}_{(aq)}$$

What is meant by the term 'rechargeable battery'? (1 mark) (a)

Pereze reaction is viable

What kind of cell (primary or secondary) is a rechargeable battery? (b) (1 mark)

What is the oxidation state of the vanadium in each of the species shown in this (c) (4 marks) equation?

Using the half equation technique, balance the overall equation shown. (d) (3 marks) Show all half equations.

 $V02^{+}+2k^{+}+\epsilon \rightarrow V02^{+}+K_{20}$ RED V^{24} $\rightarrow V^{34}+\epsilon$ ox

VO2 + 2H+ + V2+ -> VO2+ + V3+ + K20 discharge

While the cell is recharging identify the anode half equation. (2 marks) (e)

LIGSTADIXO = 3404A

VO2+ +420 -> VO,+ +2H+ =

End of Examination

				
·····				
***************************************				·· <u>·</u>
			Υ.	
			·····	
<u> </u>	. ~			
		·		
·				
ALTERUATUÉ				
\(\(\lambda\)	44+ +26 -> 1	13+ + 24	1.0	6 <i>6</i> D
VO2	TH ALE	V 21	(20	<u> </u>
124	1/20 ->	VO 2+ + 2	H+ +26	٥×
Vo.+	+ V2+ + 2H+	-> V3+	+ VO2+ + Hs	O duc
-				
Recharging was	etroi:			
VB+.	+ 2H20 -> 1	102 + 4H	+ + 2/2	
	,			

This page is available for extra working space. Be sure to clearly label the